

A Literature Review On Continuous Delivery And Continuous Deployment:
Problems, Causes, And Solutions

Hashim H. Alneami
College of Engineering

Embry-Riddle Aeronautical University
Daytona Beach, USA

alneamih@my.erau.edu

Abstract—Continuous Delivery (CD) is a software
development discipline which facilitates the releasing of
software at any time. Additionally, continuous deployment is
an extension of CD in which the continuity is extended to the
deployment to production stage. With respect to the current
implementation of these disciplines, there were issues and
challenges standing in the way of adapting CD and continuous
deployment by software companies. In this paper, I conduct a
literature review on continuous delivery and continuous
deployment in which I define both disciplines and explained
their differences. I also discuss the problems regarding them as
well as the causes and introduce some of the suggested
solutions proposed in previous research papers. I then give an
analytical exposition on the existing solutions to CD problems.

Keywords—continuous delivery, continuous deployment,
software development

I. INTRODUCTION
Continuous delivery (CD) is a software engineering

discipline that enables developers to continue producing
usable software in short periods of time and make sure the
software can be reliably released at any time [1]. Giving the
potential benefits of applying CD as a development
framework, some companies have adapted CD, and there are
many software companies that look forward to use CD as
their standard in software development.

Continuous deployment is considered as an add-on to CD
in which the team build the software, test it, and deploy it to
production automatically without the need of any manual
steps between the developer commit and the deployment [2].
Continuous delivery is used to generate quick feedback from
users after deployment, so defects can be fixed with
reasonable cost [3]. Since the two frameworks are closely
similar, it is noted that some people might refer to both of
them as equivalent.

Although several companies have gained an interest in
adapting a continuous scheme in development, they were
faced with major challenges that stopped them from going
further. Such problem raises an important case on whether
the difficulty of adapting CD is much higher than the
predicted value of CD, or the industry is still way behind
adapting best practices [2]. According to Neely and Stolt [4],
Rally Software, a software company, had to go through
challenges regarding their build systems, automated testing
frameworks, customer reviews, and communication
internally. The issues that must be addressed exist across all
of the different phases of the development process. Also,
they extends to the production deployment since the
continuity includes all of the stages involved in the project.

Almost all of the papers on CD I have read revolve
around the problems hindering software companies from
implementing the concept of continuous delivery and

continuous deployment. In this paper, I discuss the problems
that could result from adapting CD as well as continuous
deployment along with their causes. I also mention some
suggested solutions that could enable companies to apply CD
to their development environments.

II. CONTINUOUS DELIVERY

A. What Is Continuous Delivery?
Continuous delivery (CD) is a software development

discipline that allows for the release of the software to
production at any time [5]. It is essential in CD that
automation is applied to the release process in a reliable
manner. In CD, several stages are used to ensure whether the
software is in a releasable condition [2]. Neely and Stolt [4]
states that the frequency of deploying the software is not the
focus of attention but the ability to deploy it at will is what
matters. Moreover, CD differs from other disciplines by
having defining characteristics such as delivering valuable
software, deploying in short cycles, releasing at any time,
and providing reliable releases [6].

The reason of why continuous delivery is attracting the
attention of many software companies, and is adopted by
some companies is the benefits it bring to these companies
and their overall business goals. One of the benefits is
gaining more visibility on the development process.
Developers and stakeholders can have a clear vision of what
the software is going to carry to their customers. This also
means more empowerment to stakeholders as deployment to
production starts sooner than the usual duration in the
traditional way [2]. Chen [1] also mentions that adopting CD
improves customers’ satisfaction since their feedback on the
software is collected faster. Adopting CD guarantees more
reliable releases of the software [6]. The repeated testing
before deployment and the frequent releases due to the CD
process have enabled for more reliable and better software.

However, companies that make the decision of adopting
the continuous delivery approach are bound to work with
several problems and challenges in order to have a successful
transition to CD. In this paper, I used the findings made by
Lakkanen et al. [2] as the base of determining the problems,
causes, and solutions regarding adopting CD since these
findings provide a thorough analysis of the current literature
conducted on continuous delivery.

B. Problems of Continuous Delivery
There are many problems that prevent many software

companies from adopting continuous delivery as their
software development discipline. In their study, Laukkanen
et al. [2] categorized CD problems into seven different
themes. “Table I” lists the themes with some of their related
problems. Those themes are build design problems, system
design problems, integration problems, testing problems,

release problems, human and organizational problems, and
resource problems [2]. The last two are concerned with the
company’s capability for adopting CD before the
development process while the rest are concerned with the
software development process.

TABLE I. PROBLEMS CATEGORIES AND RELATED PROBLEMS,
ADAPTED FROM LAUKKANEN ET AL. [2].

Category Related Problems

Build design Inflexible build, complex build

System design
System modularization, unsuitable
architecture, internal dependencies,

database schema changes

Integration
Defected development flow, slow

integration approval, merge conflicts,
broken build

Testing Flaky tests, ambiguous test results, time-
consuming testing

Release
Documentation, feature discovery,
marketing, more deployed bugs,

deployment downtime

Human and organization

Lack of discipline, lack of motivation, lack
of experience, more pressure, changing
roles, team coordination, organizational

structure

Resource Insufficient hardware resources, network
latencies, effort

Chen [1] mentions that the biggest challenge Paddy
Power, a software company, has faced since adopting CD
was organizational. Disagreements may occur among
different departments of the company because of the possible
differences in managing and pursued goals. That is why it is
critical to establish a cooperative environment among the
company’s departments and work on ways to encourage the
employees to work cooperatively in order to achieve the
company’s overall goals. It is also noted that getting the
approval from all the management levels in the company to
adopt CD can require a lot of time [6].

C. Causes of Continuous Delivery Problems
Laukkanen et al. [2] came up with a casual explanation to

the problems faced when adopting continuous delivery based
on their qualitative coding done on the extracted articles used
in their study. When I searched for the articles involving
continuous delivery, I found out that casual explanation
shown in “Fig. 1” which was created by Laukkanen et al. [2]
covers all the possible causes discussed in the related
literature. The reported casual explanation draws the casual
relationship between the found problems of CD across the
different problem categories.

Fig. 1. All reported causal explanations. Roots that do not have any
underlying causes are underlined and leafs that do not have any effects are

in italics. Adopted from Lakkanen et al. [2].

D. Solutions to Continuous Delivery Problems
Laukkanen et al. [2] divided the proposed solutions into

six categories shown in “Table II”. The themes include
system design, integration, testing, human and
organizational, and resource. They are the same as the
proposed problems themes except that it does not include the
build design category as the research on the topic did not
have sufficient explanation on build design solutions. Having
said that, it can be possible to overcome the inflexibility in
the design by establishing vastly used standards, designing
open APIs, and creating a robust plug-in environment [1].

One of the proposed solutions to obtain faster migration
to continuous delivery is to create a visual CD pipeline
skeleton which can develop a more tangible sense towards
CD by the development team as well as sustain their
adaption momentum [6]. Furthermore, Neely and Stolt [4]
stated that Rally Software was encouraged to invest more
money on its GUI testing framework in order to prevent
testing problems like flaky tests and slow-time testing.

TABLE II. SOLUTIONS CATEGORIES AND RELATED SOLUTIONS,
ADAPTED FROM LAUKKANEN ET AL. [2].

Category Solutions

System design
System modularization, hidden changes,

rollback, redundancy

Integration Reject bad commits, no branches, monitor
build length

Testing

Test segmentation, test adaptation,
simulator, test parallelization, database

testing, testing tests, comprehensive
testing, commit-by-commit tests

Release Marketing blog, separate release processes

Human and
organizational

Remove blockages, situational help,
demonstration, collaboration, social rules,

more planning, low learning curve,
training, top-management strategy,

communication

Resource Tooling, provide hardware resources

III. CONTINUOUS DEPLOYMENT

A. What Is Continuous Deployment?
In continuous deployment, software is deployed

continually at a fast pace. It includes the automated testing of
software incremental changes and the frequent deployment
of these changes to production ecosystems [7]. Such practice
can lead to faster reach to customers as the product can be
deployed within days or even hours. It differs from
continuous delivery (CD) in its automatization to acceptance
tests and deployment to production stages.

Additionally, it is clearly noted that companies have
different deployment frequency rate per day thus the
definition of continuous deployment might not be
explanatory for all existing adoptees. However, Rahman et
al. [8] suggested a more tailored definition of continuous
deployment in order to establish a wider understanding of the
topic. They define continuous deployment as “a software
engineering process where incremental software changes are
automatically tested, and frequently deployed to production
environments” [8].

B. Problems of Continuous Deployment
One of the problems faced during the automated testing

for a large-scale application such as Facebook is that it is not
always clear if a problem has occurred [9]. Leppanen et al.
[10] found that none of the fifteen companies, which they
studied their implementation of continuous deployment,
developed a complete automated deployment pipeline.

During their transition to continuous deployment,
companies might also face other challenges regarding their
network configuration, upgrade issues, unclarity of the
deployment process [11]. In their research, Claps et al. [12]
have categorized the potential problems companies might
face when adopting continuous deployment into two main
categories shown in “Fig. 2”. The first category is related to

the problems concerned with the technical side of the
adaption, and the second category is concerned with the
social adoption challenges.

Fig. 2. Technical and social challenges. Adopted from Claps et al. [12].

C. Causes of Continuous Deployment Problems
One of the reasons that can lead to errors that are hard to

debug is the continuous configuration changes [7].
Companies with a large codebase are required to conduct
changes thousands of times a day which makes the tracking
process so difficult to manage.

In addition, customers’ distrust in more frequent releases
can lead to customer adoption problems. Researches have
stated that customers play an important factor on the social
challenges side toward adopting continuous deployment
[10]. Olsson et al. [11] mentioned that the customer’s local
and customized configuration can lead to complexity when
continuous deployment is set to be adopted.

D. Solutions to Continuous Deployment Problems
As demonstrated in previous research, there are a number

of suggested solutions and actions that could help software
companies interested in adopting continuous deployment to
overcome some of the most critical barriers. Including more
organizational levels, especially in the management side, can
mitigate some of the problems related to the social adoption
side [11].

Companies must find a way to facilitate for more
flexibility from their customers and educate them on the
perceived benefits of adopting the discipline of continuous
deployment. It seems that many customers object the concept
of using more frequent releases.

IV. CONTINUOUS DELIVERY VS. CONTINUOUS DEPLOYMENT
Continuous delivery and continuous deployment are

software development disciplines that are used to conduct
software changes rapidly to customers. Humble and Farley
[13] defined continuous deployment as a software process
that releases software changes automatically to customers the
required automated tests. Fowler [14] defines continuous
delivery as the software engineering approach that builds
software in such a way that it is releasable at any time. Also,
he defines continuous deployment as the software process
that actually releases software to production as soon as they
are ready, resulting in many deployments to production
every day [14]. These definitions of continuous deployment

appear to be alike however, Fowler does not emphasize the
automated testing process.

V. CONCLUSION
When I investigated the existing examples of adopting

continuous delivery and continuous deployment, it was
highly noted that the barriers standing in the way of a
continuous approach fall under one two themes, technical
and social. If company decides to adopt a continuous
development process, it will have to deal with several
organizational problems involving development team
adaption, management approval, and others. However, the
company is expected to embrace the adopting of continuity
as the perceived benefits are collected in the early stages.

Technically, most companies that adapted continuity face
challenges regarding applying automated testing and
complexity problems. Companies should focus more on
improving their GUI testing framework as well as working
toward creating standardized solutions. Specially at the
beginning, they might need to enhance their monitoring
process to ensure that the release is free from difficult to
debug errors.

Furthermore, I noticed that the amount of research papers
published on the topic is still lacking. We need more research
studies conducted specifically for continuous delivery and
continuous deployment. Also, publication bias can be seen
through available work as the judgement established might
indicate less problematic condition than in reality.

REFERENCES
[1] Chen, L. (2015). Continuous delivery: Huge benefits, but challenges

too. IEEE Software, 32(2), 50-54.
[2] Laukkanen, E., Itkonen, J., & Lassenius, C. (2017). Problems, causes

and solutions when adopting continuous delivery—A systematic
literature review. Information and Software Technology, 82, 55-79.

[3] Fitz, T. (2009). Continuous deployment.
[4] Neely, S., & Stolt, S. (2013, August). Continuous delivery? easy! just

change everything (well, maybe it is not that easy). In 2013 Agile
Conference (pp. 121-128). IEEE.

[5] Fowler, M. (2013). Continuous delivery. martinfowler. com.
[6] Chen, L. (2017). Continuous delivery: overcoming adoption

challenges. Journal of Systems and Software, 128, 72-86.
[7] Parnin, C., Helms, E., Atlee, C., Boughton, H., Ghattas, M., Glover,

A., ... & Stumm, M. (2017). The top 10 adages in continuous
deployment. IEEE Software, 34(3), 86-95.

[8] Rahman, A. A. U., Helms, E., Williams, L., & Parnin, C. (2015,
August). Synthesizing continuous deployment practices used in
software development. In 2015 Agile Conference (pp. 1-10). IEEE.

[9] Feitelson, D. G., Frachtenberg, E., & Beck, K. L. (2013).
Development and deployment at facebook. IEEE Internet Computing,
17(4), 8-17.

[10] Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V. P., Itkonen, J.,
Mäntylä, M. V., & Männistö, T. (2015). The highways and country
roads to continuous deployment. Ieee software, 32(2), 64-72.

[11] Olsson, H. H., Alahyari, H., & Bosch, J. (2012, September). Climbing
the" Stairway to Heaven"--A Mulitiple-Case Study Exploring Barriers
in the Transition from Agile Development towards Continuous
Deployment of Software. In 2012 38th euromicro conference on
software engineering and advanced applications (pp. 392-399). IEEE.

[12] Claps, G. G., Svensson, R. B., & Aurum, A. (2015). On the journey to
continuous deployment: Technical and social challenges along the
way. Information and Software technology, 57, 21-31.

[13] Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Automation
(Adobe Reader). Pearson Education.

[14] Fowler, M. (2010). Featuretoggle. October, 29, 1-4.

	A Literature Review On Continuous Delivery And Continuous Deployment: Problems, Causes, And Solutions
	I. Introduction
	II. Continuous Delivery
	A. What Is Continuous Delivery?
	B. Problems of Continuous Delivery
	C. Causes of Continuous Delivery Problems
	D. Solutions to Continuous Delivery Problems

	III. Continuous Deployment
	A. What Is Continuous Deployment?
	B. Problems of Continuous Deployment
	C. Causes of Continuous Deployment Problems
	D. Solutions to Continuous Deployment Problems

	IV. Continuous Delivery VS. Continuous Deployment
	V. Conclusion
	References

